Liposomal Formulation Delivers Medication More Effectively

By Mayra Pierce


Nanotechnology is a dynamic branch of science that transforms and manipulates substances on a molecular and even atomic level. Liposomes refer to microscopic cellular bubbles made of materials called phospholipids, which are similar to human cell material and are both attracted to and repelled by water. Liposomal formulation helps create these structures for use in the targeted delivery of medication.

The significance of these very small vesicular forms that are able to enclose molecules soluble in water became apparent soon after being introduced during the 1960s. Pharmacists and research scientists became keenly aware of their potential to improve methods of drug delivery when fighting cancer and other serious illness. They encourage more accurate targeting of malicious cells while avoiding issues that plague other forms of administration.

The formulations avoid absorption problems and outcomes that are associated with direct IV or oral administration. Conventional systems of delivery can produce difficulty in accurately managing the consequences of harsh drug therapy, primarily because they concentrate toxicity in healthy organs, often producing a great deal of collateral damage. When the bubble-like liposomes containing medications are used, the release of those drugs is more readily controlled.

Molecules of medication are suspended in water inside these cellular structures, and encased in membranes created both naturally or artificially. They can be designed in ways that make them ideal mechanisms for enveloping hydrophilic drugs, or molecular groups that are attracted to and become easily transported in water. When manufactured using current processes, they form two groups called multilammelar and unilammelar, both of which include subcategories.

The liposomes are made to surround the medications with membranes, and when activated release those molecules into other cells. This can be done by fusing the layers, causing them to interact with adjacent human cells, and releasing medication in the process. Other activation strategies include using specific chemical reactions to encourage molecular diffusion. The end result is a controlled, steady delivery.

Not only can this process be more easily managed by physicians, but it leaves no residual toxins behind, and is compatible biologically with human cells. Comparatively recent developments in ultrasound technology use sound waves to activate these chemical invaders, increasing their strength in regions where it is most needed. Others are being administered via the respiratory system, where they are deposited in the lungs and slowly released.

It is still comparatively costly to manufacture these microscopic capsules. As practicality increases and research finds new uses and procedures, expenses will probably decrease, but still remain high. As is the case in most newer technologies, there are still many unresolved issues. Some forms of these artificial cells have had problems with wall or membrane leakage, while others have been degraded by oxidation and other natural processes.

Like many medical innovations, liposomes are increasingly being used commercially. They are being called a better way to deliver vitamin, herbal and mineral supplements, and there are popular recipes for the personal creation of dietary supplements. While these uses produce their own controversies, the continued development of better medication delivery systems gives additional hope for advanced treatments.




About the Author:



Comments

Popular posts from this blog

Considerations When Shopping For Gluten Free Weight Loss Supplements

Fitness for the lazy : express exercise.